
Interactive Genetic Algorithms for User Interface Design

Juan C. Quiroz, Anil Shankar, Sushil J. Louis, Sergiu M. Dascalu

Abstract— We attack the problem of user fatigue in de-
veloping an interactive genetic algorithm that helps design
user interfaces. The interactive genetic algorithm combines
computable user interface design metrics with subjective user
input to guide evolution. Individuals in our population represent
interface specifications and we compute an individual’s fitness
from a weighted combination of user input and user-interface-
design guidelines. Result from our preliminary study involving
three users indicates that users are able to effectively bias
evolution towards user interface designs that reflect both user
preferences and computed guideline metrics. Furthermore, we
can reduce fatigue, defined by the number of choices needing
to be made by the human designer, by doing two things. First,
asking the user to pick just two (the best and worst) user
interfaces from among a subset of nine shown. Second, asking
the user to make the choice once every t generations, instead
of every single generation. Our goal is to provide interface
designers with an interactive tool that can be used to explore
innovation and creativity in the design space of user interfaces
and make it easier for end-users to further customize their
interface without programming knowledge.

I. INTRODUCTION

User interface (UI) design is an expensive, complex, and
time consuming process usually driven by documented style
guidelines and design principles. However many of these
guidelines and design principles are difficult to translate into
code and good UI design is driven in large part by human
aesthetics in their look and feel. Furthermore, Thimbleby
points out that it is difficult to generalizes beyond specific
case studies [15]. Thus UI designers tend to be guided both
by objective measures gleaned from UI style guidelines and
design principles, and by subjective measures such as the
“look” and “feel” of an interface. Our interactive genetic
algorithm combines both measures in its fitness function and
allows the UI designer to simply and efficiently explore the
space of UI designs.

Interactive genetic algorithms (IGAs) differ from GAs
in that objective fitness evaluation is replaced with user
evaluation. As such, they can incorporate intuition, emotion,
and domain knowledge from the user. However, GAs usually
rely on the use of large population sizes running for hun-
dreds of generations to achieve satisfactory results [8]. Such
computational dedication cannot be expected from the user
due to psychological and physical fatigue. Thus, although
the use of IGAs presents us with a powerful tool with which
to incorporate subjective evaluation into the GA process,
how best and effectively to incorporate user input remains
a significant research challenge [14].

The authors are with the Evolutionary Computing Systems Lab, Depart-
ment of Computer Science and Engineering, University of Nevada, Reno,
NV 89557, USA. Email: {quiroz, anilk, sushil, dascalus}@cse.unr.edu

Our work differs in that we use both a computable fitness
criterion and user evaluation to compose a combined fitness.
We encode user interfaces as individuals in an IGA, and run
over a number of generations to help explore the space of
UI designs. Periodically, the UI designer sees the phenotypes
(the UIs) corresponding to nine of the best individuals in
the population and picks two - the best and worst looking
interfaces. Empirical observations tell us that we should not
display more than nine or ten items to be judged by a
user [11]. In addition, users will tire and become erratic in
their choices if we ask them to make hundreds of decisions.
In this paper we reduce user fatigue by asking the user to pick
two individuals from nine shown, every t generations of the
IGA. Preliminary user studies show that users are still able
to effectively bias evolution towards designs that reflect their
preferences as well as the bias imparted by the computable
interface design metrics.

The rest of the paper is organized as follows. We discuss
IGA’s, the challenges of UI design and related work in
the next section. Section III presents the encoding used for
individuals in the population. The next two sections discuss
how we do subjective and objective evaluations and our
experimental setup. Section VI describes our results with
test subjects using our IGA to evolve a simple UI. Finally,
in section VII we present our conclusions and directions for
future work.

II. BACKGROUND

In the following subsections, we describe IGAs, the inher-
ent challenges of UI design, work related to incorporating
user input into IGAs, and the use of evolutionary techniques
for UI design. We also explain our choice of XUL as the
target language for our UIs.

A. Interactive Genetic Algorithms (IGAs)

IGAs provide a mapping from a user’s psychological space
to a GA’s parameter space and thereby combine the power
of human subjective evaluation with evolutionary compu-
tation [14]. We can thus incorporate human preferences,
knowledge, emotion, and intuition into GAs. A GA computes
an individual’s fitness using a mathematical equation, some
computation, or a model [8]. However, we cannot model
users trivially; users preferences are relative and context-
dependent. In interactive genetic algorithms the user par-
ticipates in fitness evaluation - in many cases the user is
the fitness function. Generally a user assigns fitness to an
individual in the following ways: (1) assigning a number
on a subjective grading scale, (2) ranking the individual, or
(3) choosing the best individual from a displayed subset [8],
[14]. A wide variety of applications that depend on creative

human input like editorial design, industrial design, image
processing, database retrieval, graphic art, computer graphics
animation, control and robotics amongst other are ideal
candidates for an IGA-based approach due to the user-centric
nature of IGAs [14].

Note that for an IGA-based user centric application, we do
not have the luxury of relying on large populations sizes and
hundreds of generations (like a canonical GA) because it is
unrealistic to request a user to make hundreds or thousands of
choices. If pressed for too much feedback, users are likely to
lose interest and get tired. Llora, Sastry, Goldberg et al. have
shown that the subjective nature of human input can lead to
users changing their task goals through an IGA run [8]. Such
user behavior results in noisy landscapes - which coupled
with user fatigue can lead to suboptimal solutions.

Because of the subjective and creative nature of UI design,
we believe that an interactive genetic algorithm is a viable
tool for UI design. We briefly describe UI design and its
challenges in the next section.

B. User Interface Design

Designing interactive systems that are easy to use, engag-
ing, and accessible to all users is a challenging task. User
interface design is a complex process critical to the success
of any software system. The design of a user interface is a
time-consuming, costly component of a majority of software
projects.

Graphical User Interface (GUI) development toolkits and
libraries provide UI designers basic widget elements (menus,
buttons, textboxes) to develop GUIs faster. Kim and Foley
have shown that GUI toolkits and libraries that facilitate
design activities at too low a level might allow a UI designer
to create a bad or poor design quickly [7]. Therefore, UI
designers use style guidelines and design principles to design
more usable interfaces. Style guidelines and design principles
also help to evaluate a generated design. These guidelines
define the look and feel of a user interface in addition to
addressing the organization of widgets, the use of color, the
use of font, the use of spacing and margins, among other
properties. Current examples of prominent style guidelines
include Apple’s Human Interface Guidelines, Microsoft’s
User Interface Guidelines, Sun’s Java Look and Feel Guide-
lines, and GNU’s GNOME Human Interface Guidelines [1],
[9], [13], [5]. Use of style guidelines and design principles
leads to a couple of issues. The first issue is that “inter-
preting the guidelines unambiguously and applying generic
principles to a particular design problem is itself a major
challenge” [7]. Secondly, guidelines are either too specific
or too vague, so they do not always apply to the problem
at hand. Here is an excerpt from Apple’s Human Interface
Guidelines: “use color to enhance the visual impact of your
widgets” [1]. This guideline is incomplete and confusing in
that the guideline does not tell us which color to use for a
given widget and on which context this principle should be
applied. Such ambiguous guidelines force UI designers to
make subjective decisions and evaluations to fill in omitted
details.

C. Related Work

We address research challenges from two areas: incorpo-
rating user input into IGAs, and using evolutionary tech-
niques for UI design.

1) Evolution of UIs: Oliver, Monmarché, and Venturini
explored the evolution of the websites appearance and lay-
out [10]. The user evolves either the style or the layout
of a webpage; these two optimizations are separated in
order to simplify the evaluation of individuals. The user
guides evolution by picking the individuals the user likes,
then replacing the rest of the individuals by mating and
applying high mutation rates to the selected individuals. CSS
parameters like font size, font color, font family, link color,
text alignment were evolved in their experiments. We expand
on this work in two ways: first, our research incorporates
expert knowledge (in the form of style guidelines) in addition
to incorporating the subjective evaluation by a user. Second,
they used a population size of 12 individuals in order to
display and fit all individuals on a screen. Instead we use
large population sizes and display a small subset of the best
nine (9) individuals, allowing us to sample the space of UIs
more effectively and to present the user with potentially high
fitness individuals.

2) User Fatigue in IGAs: Cho considers IGAs a suitable
tool for problems where the fitness evaluation metric is in
the human mind and difficult to compute [2]. UI evolution
fits in this domain since UI designers create UIs based on
guidelines as well as aesthetics. Reducing human fatigue is
a major research problem in this domain [14]. We address
this issue by first having the user evaluate a small subset
of a large population, instead of having the user evaluate the
entire population. Further, the users in our study guide a UI’s
evolution by only selecting the best and worst individuals
from the subset displayed. Hence, our study subjects do not
have to evaluate or rank all individuals in the subset.

Llora, Sastry, Goldberg et al. make the user pick the best,
equality relations are also allowed, from a displayed small
subset [8]. Their displayed subset is a tournament during
selection, so they limit the population size to minimize the
number of possible tournaments. The partial ordering of
solutions, from the winners and losers of the tournaments, is
used along with the dominance concepts of multi objective
optimization to induce a complete ordering of solutions,
which is subsequently used to train an SVM to learn the
user’s preferences [8]. In our current work we do not attempt
to do any user modeling with machine learning techniques.
Instead, we use a simple interpolation based on the user
selection of the best and worst to determine the fitness of
every other individual in the population. Thus we reduce the
user input to two decisions every generation.

Kamalian, Zhang, Takagi et al. make the user evaluate
a subset of the population every tth generation [6]. We
adopt a similar approach to put the user in a supervisory
role and thus reduce the amount of user feedback. In our
previous work we explored the effect of various values of
t on the IGA performance with a simulated user, where we

found that as the value of t increases, noise is introduced
into the fitness landscape ??. Section VI addresses results
obtained by varying the value of t with our three subjects,
instead of with a simulated user. Finally, in Kamalian’s
work, a user provides either a demote or promote reaction
to individuals displayed for user evaluation. The algorithm
uses a validity constraint to determine viable and meaningful
designs displayed to the user and numerous individuals can
match this constraint. In a similar approach, we incorporate
an objective fitness component which evaluates compliance
with UI design guidelines.

D. XUL UIs

We use the XML User-interface Language, a cross-
platform markup language for user interfaces, as the target
language for our evolved UIs [17]. XUL is a powerful and
extensive language and it allows widget appearance defini-
tion through CSS style sheets [17]. XUL uses JavaScript
to implement widget behaviors. We choose XUL as the
target language because of its flexibility and the ease with
which widgets can be manipulated. XUL is also suitable
for evolving the structure of UI layouts. Using XUL syntax
and structure, we can create a wide range of applications,
from a simple layout consisting of two buttons, to a full
fledged application consisting of a menubar, toolbar, and
other common widget elements. XUL forms a subset of
XML, and therefore we can use XML parsers and libraries
to handle the manipulation of our XUL UIs.

III. UI REPRESENTATION

We encode the UI representation in two chromosomes
(Fig. 1). One chromosome encodes widget layout organi-
zation, and the second chromosome encodes widget char-
acteristics (such as widget color). We organize the widgets
on a 10 rows by 2 columns grid. In user interface design
a sizer usually manages widgets, and a grid sizer allows
efficient widget organization in a layout. The grid layout also
enforces alignment of widget, which is a style guideline in
UI design. We avoided widget encoding as a bit string since
standard genetic operators such as crossover or mutation
could potentially destroy the representation by introducing
duplicate widgets. To avoid this problem, we encode the
widgets in an integer permutation string, of size 20 (10
rows by 2 columns), where each integer represents a unique
identifier for each widget and 0s represent empty cells
filled with spaces. The integer string maps to the 2D grid
representation in a row major fashion. We chose the 10x2
grid because this results in UIs able to fit in the available
space in our sample application: the Lagoon UI for the
MoveTo panel explained in more detail in Section V.

To preserve the integer representation of the layout chro-
mosome, we use PMX, partial mapped crossover. PMX
prevents duplicate widget insertion during crossover. We
use swap mutation, where we randomly pick two genes in
the integer chromosome and swap their values. The integer
permutation representation used for the layout of the widgets
also saves us from having to compute whether widgets

overlap, a computational save of l2 for each individual (of
length l) in the population (of size n), and a total save of l2n

computation every generation. Hence we can explore widget
layouts by permuting widget identifiers.

Fig. 1. UI encoding consists of two chromosomes. The widget character-
istics chromosome encodes the color of each widget in a bit format. The
widget layout chromosome encodes the position of the widgets in the grid.
Widgets are identified by integer IDs greater than 0 and empty cells in the
grid are identified with 0s.

The second chromosome encodes widget characteristics
for each individual. This chromosome is a standard bit string
and we use standard one point crossover and bit flip mutation
on this part of an individual.

A. Widget Layout

We layout our widgets on a grid construct provided by
XUL which allows us to organize our widgets in rows and
columns.

We have tried using other layout organizations, including
absolute positioning and positioning relative to other widgets.
In absolute positioning we encoded the cardinal coordinates
of our widgets, where the coordinates specified where in the
panel the widgets were placed. While this was simple to
implement, it resulted in widgets being placed on top of each
other. This added another level of complexity to be resolved
by the user by providing input into the system specifying
that the UIs the user liked the best were the UIs with widgets
not stacked on top of each other, instead of having the user
concentrate on more useful characteristics, such as the actual
widget organizations and the look and feel. We may return
to this representation in the future.

Next we tried using relative positioning, where we encoded
the relative positions of widgets with respect to the previous
widget in the chromosome. The four positions allowed were
left, right, up, and down. The first widget in the chromosome
was placed on the middle of the panel, with each subsequent
widget being placed relative to its predecessor in the chro-
mosome. Without any bounds or overlap checking, we got
cases where the widgets in the UI would almost line up in
a straight line, resulting on elongated UIs that wasted screen
space. Finally, the IGA still placed widgets on top of each
other, since a widget placed to the left of a widget with
a neighboring widget already on the left results in stacked
widgets.

Although for the two previous representations we expect
a GA to eventually untangle the layout, the permutation
representation seems to be a more effective and elegant
solution to the layout of the widgets. By laying out widgets
in columns and rows we are able to avoid the overlapping
of widgets without the n2 computation involved to check the
overlap of widgets. Most importantly, we restrict the layout
of widgets to the dimensions of the grid and because of the
nature of the grid layout, widgets are aligned with each other,
which implicitly enforces a guideline of style.

B. Widget Color

We encode widget color on the widget characteristics
chromosome. For the color we use the RGB color model,
where each color is a combination of various degrees of
red, green, and blue. The RGB components vary from 0 to
255 respectively. So red is (255, 0, 0), green is (0, 255, 0),
and blue is (0, 0, 255). Hence, we require 8 bits for each of
the three main color components, with a total of 24 bits to
represent the color of a single widget. This representation
allows us to explore the 224 space of colors for each widget.

The RGB model was chosen because of its support in
CSS, which is how the characteristics of widgets are specified
in XUL, the target language for our UIs. We could have
used the HSV color model [?], but its gamut is the same as
RGB, and experiments have shown that there is no significant
efficiency difference in the RGB and HSV color models [3],
[16]. Therefore, we decided to stick to RGB, however we
treat RGB colors as vectors in a 3D color-space.

IV. FITNESS EVALUATION

Our IGA’s fitness evaluation consists of two steps: (1)
user input evaluation, and (2) objective metric conformance
checking. In the first step we have the user make two
selections, the UI the user likes the best and the UI the user
likes the least. We use these two selected UIs to evaluate the
subjective fitness component of all other individuals in the
population through interpolation. In the second step the GA
looks through the UIs in the population and checks to see
how well they adhere to or violate coded guideline metrics.
We then add the subjective and objective fitness components
in a linear weighted sum. For this experiment we used equal
weights for the subjective and objective fitness components.

A. Subjective Evaluation

Our earlier work discusses our decision to choose a subset
consisting of best individuals in the population [12]. We
compute the similarity between two individuals in two steps.
In the first step, we calculate color similarity of the two
UIs, in terms of the widgets and the panel background.
To determine color similarity, we calculate the euclidean
distance between two colors. We reward a small distance
between the widget color in individual i and the user selected
best individual b. On the other hand, a large distance between
the widget color in individual i and the user selected worst
individual w is rewarded. Next, we compute widget layout
similarity. Here we compute the hamming distance between

the permutation layout chromosomes of the two individuals.
This fitness is inversely proportional to the hamming distance
between individual i and the user selected best b and directly
proportional to hamming distance between i and the user
selected worst. Finally, we scale the subjective component
to make it comparable to the objective component.

We compute similarity between the best individual b and
individual i in the population as follows:

bs =

m∑

k=1

M − dist(eb,k, ei,k)

M
∗ 100

+(MH − hamming(b, i))

ws =

n∑

k=1

dist(ew,k, ei,k)

M
∗ 100

+hamming(w, i)

subjective = bs + ws

The term within the summation computes color similarity
and the second line, the layout similarity. bs is the subjective
fitness component computed with reference to the user-
selected best individual while ws computes the subjective
fitness component with reference to the user-selected worst
individual. In the formulas above, M is the maximum
distance between any two colors,

√
2552 × 3 = 441.68

and dist(eb,k, ei,k) is the euclidean distance between the
kth widget of the best individuals and the kth widget of
individual i. MH is the maximum hamming distance (l =
20). We finally scale the subjective fitness to lie between 0
and and 1000.

B. Objective Evaluation

We compute the objective fitness component by checking
how well UI individuals in the population adhere to and
respect coded style guidelines. Our first coded color style
guideline checks whether a UI has a high contrast between
background panel color and widget foreground colors. Main-
taining a low contrast between widget colors is our second
coded color style guideline. We prefer the high contrast
between background and widget colors to ensure legibility.
The low contrast between widget colors ensures that widgets
have a similar shade of color, instead of having each widget
in a UI with an independent color. The use of the grid
positioning to layout widgets enforces their alignment, which
is a style guideline too.

We iterate through the widgets of each UI layout and
compute the euclidean distance from each widget color to
background panel color to check high contrast between the
background panel color and widget colors. We consider a
large distance between widget j and the panel background
color as a high contrast value. We sum all the euclidean
distances, rewarding individuals that have a high euclidean
sum. Next, we compare each widget j in a UI layout to every

other widget (an n2 computation) in the layout, taking their
euclidean distances and adding them up. Large euclidean
distance values between two widgets means that the widgets
do not have a similar shade of color. We do this to cluster the
colors in 3D space into a center of gravity which defines the
color shade that all these colors should share in common. A
large sum of the euclidean distances means that all widgets
have very different colors, and hence they are spread out
far from each other thereby violating our style guidelines.
We therefore assign a low reward to such an individual. A
small sum of the euclidean distances means that the widgets
are clustered together and share a similar shade of color.
This individual fulfills our style guideline and we therefore
assign a high reward. We sum the rewards from the high
contrast between widget colors and background color and
low contrast between widget colors. Finally, as with the
subjective fitness, we scale this objective value to also lie
between 0 and 1000.

obj1 =

m−1∑

k=1

m∑

j=k+1

dist(ei,k, ei,j)

M
∗ 100

obj2 =

m∑

k=1

M − dist(ei,k, window bgi)

M
∗ 100

objective = obj1 + obj2

After we compute the subjective and objective fitness
components, we take a linear weighted sum of the two to
determine the fitness of each individual:

fitness = w1 ∗ objective + w2 ∗ subjective

where w1 is the objective component weight, w2 is the
subjective component weight, objective is the fitness ob-
jective component and subjective is the subjective fitness
component. The weights w1 and w2 are complements of each
other, with values between 0 and 1. We used values of 0.5 and
0.5 for w1 and w2 respectively for the experiments discussed
in section V.

C. Parasitism

We are evolving and trying to optimize the layout and
the look of the widgets in a panel. Consequently, we have
multiple criteria that we are trying to optimize. This has led
to parasitic behavior on the evolution of UIs. The user picks
the UI the user likes the best and the UI the user likes the
least. However, the user does not specify these in terms of
what exactly the selection is being made on. When the user
picks a UI as the best, this leads to the GA attributing a
high fitness to both the look and the layout of the widgets.
For example, if the user picks a UI because of the vibrant
blue colors the widgets have, then a high fitness will be
attributed to whatever layout the widgets have. Thus, on our
simulated user picking, it is assumed that the user picks the
best and worst based on color alone, ignoring the layout

of the widgets. Widgets associated with the most blue UIs,
regardless of orderliness, will be given a high fitness as well.

In the current implementation we have not incorporated a
means with which to prevent the emergence of this parasitic
behavior. This could be suppressed by fixing either the layout
or the look of the widgets, and evolving the other non fixed
parameter. Alternatively, the user could be asked to select
the best UI based on widget layout and the best UI based on
widget look. However, this adds to the number of selections
that have to be made by the user, thus increasing user fatigue.

V. EXPERIMENTAL SETUP

For this paper, we collected data from 3 users. Our IGA’s
parameter settings are as follows: (1) population size of 100,
(2) we displayed 9 individuals for user evaluation, and (3)
we used probabilistic tournament selection with a tournament
size of 4, 90 percent probability of choosing the tournament
best individual (otherwise we choose a random individual
from the tournament losers).

Three users participated in five IGA sessions, each session
lasting 30 generations. For these five sessions, we used t

values of 1, 3,5, 10, and 15, allowing the user to bias the
evolution of the UIs 30, 10, 6, 3, and 2 times respectively.
We instructed the users to choose the UI they liked the best
and the UI they liked the least, based on whatever criteria
they desired.

Users participating in our IGA sessions guided the evo-
lution of the MoveTo interaction panel that controls combat
ships in Lagoon, a real-time 3D naval combat simulation
game developed in our lab [4]. The MoveTo panel consists
of five text labels, a button, a drop-down menu, a slider,
and two textboxes, all written in XUL and loaded into the
IGA. We chose the MoveTo panel because it has a variety of
widely used widgets, yet it is simple enough for our initial
experiments.

Our experiment investigated the effects of delayed user
input. In our previous work we had a simulated user do the
IGA runs [12]. The simulated user liked blue widgets and
greedily picked UIs with the most blue widgets as the best UI
and the UI with the least blue widgets as the worst UI. Our
simulated user results showed that asking for less user input
leads to increased noise in fitness evaluations. In this paper,
we explore how varying t affects convergence behavior and
performance with real users.

VI. RESULTS

We plotted the fitness convergence for our three study
subjects: user1, user2, and user3. Figure 2 shows user1’s
session fitness convergence of the best individuals in the
population for t = 1, 3, 5, 10, and 15. We can step like
increases for t = 1 and t = 3 as the user varies their selection
of the UI they like the best. Sharp increases in fitness reflect
the user choosing an individual that also conforms to the
objective metrics. Note that in our IGA, the population will
constantly evolve towards UIs that reflect the objective design
metrics, hence the fitness increases over time. Through the
generations the user sees individuals that increasingly reflect

 760

 780

 800

 820

 840

 860

 880

 900

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 1 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 2. Fitness performance of user 2. The plot shows the best individuals
in the population.

conformance to the objective metrics, yet which resemble
individuals the user liked. The fitness increase shows the
successful fusion of computable objective metrics and user
subjective input guiding the evolution of the UIs. Lastly,
notice that for a value of t = 3 user1 is able to achieve
a higher fitness than with t = 1. We did not expected this
behavior since our previous results with a simulated user
showed that giving the simulated user complete control over
the UI evolution by allowing them to participate in every
generation resulted in the highest fitness performance [12].
Also, we noticed that the maximum fitness for values of
t = 5, 10, and 15 remain constant. We attribute this behavior
to user1 not changing their selection of the best UI during
the entire session. With low values of t a user has more
opportunities to change the selection of the best and worst
UIs, (30 chances with t = 1 and 10 chances with t = 3).

Figure 3 shows user2’s session fitness convergence of the
best individuals for the same values of t. We see that for

 760

 780

 800

 820

 840

 860

 880

 900

 920

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 2 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 3. Fitness performance of user 2. The plot shows the best individuals
in the population.

user2, t = 10 achieved the highest fitness, and for t = 15
user2 did not change their selection of the best UI during
the entire session. User2 was also able to successfully bias
the evolution of the UIs by fusing objective and subjective
criteria. Figure 4 shows the fitness plot for user3. User3
presents interesting results, since his varied selections of the

 760

 780

 800

 820

 840

 860

 880

 900

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 3 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 4. Fitness performance of user 3. The plot shows the best individuals
in the population.

best UI helped in finding high fitness values for all t. Notice
that for all three users using a value of t = 1 did not result
in the highest fitness convergence. Figures 5, 6, and 7 show
the fitness plot of the population average for the three users.
The steep drops in average fitness performance correspond

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 1 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 5. Fitness performance of user 1. The plot shows the average
individuals in the population.

to the time steps where the user makes a selection of the best
and worst UIs. These average fitness performance results are
similar to our previous results with a simulated user.

We expected to see a drop in average performance asso-
ciated with the user changing the selection of the best and
worst UIs, but we can see a drop in performance even when
the user does not change his selection through the session
as was seen with user1 (Figure 2) and user2 (Figure 3). The
drop in fitness performance associated with user input can
be a result of a user changing the least-preferred UI while
not changing the best-preferred UI. Our comparison with the
user selected worst individual is what causes the drop in
fitness performance associated with user input. To test this
hypothesis, we conducted another session run with a user,
where the user was instructed to pick a UI at the beginning of
the session and to continually pick that individual throughout
the rest of the run. We had the user do this on two sessions,
where in one of the sessions we turned off the comparison to
the user selected worst UI. Finally, we used t = 3, since none

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 2 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 6. Fitness performance of user 2. The plot shows the average
individuals in the population.

 540
 560
 580
 600
 620
 640
 660
 680
 700
 720
 740
 760

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

User 3 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 7. Fitness performance of user 3. The plot shows the average
individuals in the population.

of the users picked the same UI as the best for t = 1 and
t = 3, hence we wanted to confirm the conjecture that such
behavior was less common with low values of t since the
user has more opportunities to change his selection. Figure 8
shows these results. The plot shows the fitness convergence
of the best and average individuals in the population with
and without comparison to the UI the user likes the least.
We can see that having the user pick the same UI as the best
at every time step results in constant maximum fitness as we
saw in Figures ??. Notice that comparing individuals in the
population to the UI the user likes the least results in steep
drops in fitness performance associated with the time step
(every 3 generations) in which the user makes a selection.
We also see from the plot that removing the comparison
to the user selected worst individual results in a monotonic
increase in fitness performance. This supports our hypothesis
that the comparison to the UI the user likes the least accounts
for the sharp fitness drops, even when the user selected best
UI remains constant. It also supports the conjecture that with
low values of t the user has more opportunities to change
the selection of the best and worst UIs.

A. User Experience

Doing all 5 IGA runs (for values of t = 1, 3, 5, 10, and 15)
took about 30 minutes to complete, with the session using a

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5 10 15 20 25 30

F
it

n
es

s

Generations

Max: No Worst Comp
Avg: No Worst Comp

Max: Worst Comp
Avg: Worst Comp

Fig. 8. Fitness performance of comparing to user selected worst and without
the comparison.

Fig. 9. The best 9 individuals in the initial population.

value of t = 1 (user input every generation for a maximum
of 30 generations), taking over half the time (20 minutes) to
complete. We found that using a value of t = 1 results in
slow changes from generation to generation, forcing the user
to pay more attention to detail. One of the users commented
that using high values of t usually converged to likable UI
colors, without having to spend a lot of time making a
selection every generation. Even though 30 generations is not
a big number, having to make a selection every generation
(t = 1) still results in user fatigue. Higher values of t seem
to significantly reduce user fatigue and lessen the time spent
on each session [8].

B. UIs Generated

Figures 9 and ?? show a subset consisting of the 9
best individuals in the population at generations 0 and 30
respectively for user3. The figures show the session using
t = 15. In generation 0, widgets start with random positions
and random colors. In generation 30, we can see the best
UIs which reflect both the user3’s preferences and which
best follow coded guideline metrics.

VII. CONCLUSION AND FUTURE WORK

We presented an IGA that combines both computable
metrics, taken from style guidelines, and human subjective
input to guide the evolution of UIs. The design process

Fig. 10. The best 9 individuals at session end.

is driven by both formalized style guidelines and by a
human sense of aesthetics, making our approach a suitable
and promising application that can change the way UIs are
designed and maintained.

Within this context, we investigated three methods to
reduce user fatigue in IGAs by 1) displaying a subset of the
best 9 individuals from the population, 2) asking the user to
select the best and worst UIs from the subset displayed for
user evaluation, and 3) assessing the effects of limiting user
input by having the user pick every t generations.

We had 3 users evolve UIs with our tool to explore how
often to ask for user input. High values of t can reduce human
fatigue and reduce the time spent by the user on a session.
Users are able to effectively bias the evolution of the UIs by
making the selections of the UIs they like the best and the
UIs they like the least. Through interpolation we were able
to reduce the number of selections to two every generation.

We believe that the work presented in this paper lays
a good foundation for future research and development.
We would like to conduct further experiments by varying
the value of t over the course of a single run, exploring
how asking for user input often early in an IGA session
(when there is a high degree of diversity in the population),
and asking for less user input in later generations (when
the population approaches convergence) affects performance.
Further, we would like to expand widget encoding to support
coupling between widgets and high level spatial relationships
with other widgets and the parent panel.

We also plan to incorporate more heuristics from the vari-
ous style guidelines into the objective evaluation component.
Further user studies need to be conducted, with a larger
sample, to evaluate the utility of the tool and the effective-
ness with which users can guide and bias the evolution of
UIs. We also plan to investigate using the longest common
subsequence metric as our similarity measure for the layout
chromosome. Last, we plan to further explore representations
and genetic operators that can yield higher fitness individuals
in less generations and with higher confidence intervals. We
need a representation which yields smooth gradients during
crossover and mutation. A color model that better correlates
to how we define similarity among colors will help.

The long-term goal of this evolutionary approach to UI
design is to streamline and help reduce the complexity
associated with the generation and the fine-tuning of UIs.
We believe that the research reported in this paper shows
the viability of an interactive evolutionary approach to UI
design.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the Office
of Naval Research under contract number N00014-03-1-0104
and upon work supported by the National Science Foundation
under Grant No. 0447416.

REFERENCES

[1] Apple. Apple human interface design guidelines: Introduction to apple
human interface guidelines, 2006.

[2] S.-B. Cho. Towards creative evolutionary systems with interactive
genetic algorithm. Applied Intelligence, 16(2):129–138, 2002.

[3] S. A. Douglas and A. E. Kirkpatrick. Model and representation: the
effect of visual feedback on human performance in a color picker
interface. ACM Trans. Graph., 18(2):96–127, 1999.

[4] ECSL. Lagoon, 2006.
[5] GNOME. Gnome human interface guidelines 2.0, 2004.
[6] R. Kamalian, Y. Zhang, H. Takagi, and A. Agogino. Reduced

human fatigue interactive evolutionary computation for micromachine
design. In Proceedings of the 2005 International Conference on
Machine Learning and Cybernetics, volume 9, pages 5666–5671. IEEE
Computer Society, 2005.

[7] W. C. Kim and J. D. Foley. Providing high-level control and expert
assistance in the user interface presentation design. In CHI ’93:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 430–437, New York, NY, USA, 1993. ACM Press.

[8] X. Llora, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi.
Combating user fatigue in igas: partial ordering, support vector ma-
chines, and synthetic fitness. In GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation, pages 1363–
1370, New York, NY, USA, 2005. ACM Press.

[9] Microsoft Corporation. Windows xp - guidelines for applications,
2006.

[10] A. Oliver, N. Monmarché, and G. Venturini. Interactive design of web
sites with a genetic algorithm. In Proceedings of the IADIS Interna-
tional Conference WWW/Internet, pages 355–362, Lisbon, Portugal,
november 13-15 2002.

[11] J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human
Computer Interaction. Wiley, 2002.

[12] J. C. Quiroz, S. M. Dascalu, and S. J. Louis. Human guided evolution
of xul user interfaces. In CHI ’07: CHI ’07 extended abstracts on
Human factors in computing systems, New York, NY, USA, 2007.
ACM Press.

[13] Sun Microsystems. Java look and feel design guidelines, 2001.
[14] H. Takagi. Interactive evolutionary computation: Fusion of the capa-

bilities of EC optimization and human evaluation. Proceedings of the
IEEE, 89(9):1275–1296, Sept. 2001. Invited Paper.

[15] H. Thimbleby. User interface design with matrix algebra. ACM Trans.
Comput.-Hum. Interact., 11(2):181–236, 2004.

[16] Y. Wu and M. Takatsuka. Three dimensional colour pickers. In APVis
’05: proceedings of the 2005 Asia-Pacific symposium on Information
visualisation, pages 107–114, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

[17] XULPlanet. Xulplanet.com, 2006.

