
28 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

This image has been deleted from the electronic version of this article due to copyright restrictions.

ASPECT-ORIENTED
PROGRAMMING

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 29

CComputer science has experienced an evolution in program-

ming languages and systems from the crude assembly and

machine codes of the earliest computers through concepts

such as formula translation, procedural programming, struc-

tured programming, functional programming, logic pro-

gramming, and programming with abstract data types. Each

of these steps in programming technology has advanced our

ability to achieve clear separation of con-

cerns at the source code level.

Currently, the dominant programming paradigm is

object-oriented programming—the idea that one builds a

software system by decomposing a problem into objects

and then writing the code of those objects. Such objects

abstract together behavior and data into a single conceptual

(and physical) entity. Object-orientation is reflected in the

entire spectrum of current software development method-

Tzilla Elrad, Robert E. Filman,
and Atef Bader, Guest Editors

PA
U

L
W

IL
EY

30 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

ologies and tools—we have OO methodologies,
analysis and design tools, and OO programming lan-
guages. Writing complex applications such as graphi-
cal user interfaces, operating systems, and distributed
applications while maintaining comprehensible
source code has been made possible with OOP.

Success at developing simpler systems leads to aspi-
rations for greater complexity. Object orientation is a
clever idea, but has certain limitations. We are now
seeing that many requirements do not decompose
neatly into behavior centered on a single locus. Object
technology has difficulty localizing concerns involv-
ing global constraints and pandemic behaviors,
appropriately segregating concerns, and applying
domain-specific knowledge. Post-object program-
ming (POP) mechanisms that look to increase
the expressiveness of the OO paradigm are a fertile
arena for current research. Examples of POP
technologies include domain-specific languages, gen-
erative programming, generic programming, con-
straint languages, reflection and metaprogramming,
feature-oriented development, views/viewpoints, and
asynchronous message brokering. (Czarnecki and
Eisenecker’s book includes a good survey of many of
these technologies [2].)

The topic of this special section is one
important POP technology: aspect-ori-
ented programming (AOP).1 AOP is based
on the idea that computer systems are bet-

ter programmed by separately specifying the various
concerns (properties or areas of interest) of a system
and some description of their relationships, and then
relying on mechanisms in the underlying AOP envi-
ronment to weave or compose them together into a
coherent program. Concerns can range from high-
level notions like security and quality of service to
low-level notions such as caching and buffering. They
can be functional, like features or business rules, or
nonfunctional (systemic), such as synchronization
and transaction management. While the tendency in
OOP is to find commonality among classes and push
it up in the inheritance tree, AOP attempts to realize
scattered concerns as first-class elements, and eject
them horizontally from the object structure.

Any structural realization of a system will find that
some concerns are neatly localized within a specific
structural piece, while others cross multiple elements.
AOP is focused on mechanisms for simplifying the

realization of such crosscutting concerns. Aspectual
requirements are concerns that (for common struc-
tural decompositions) introduce crosscutting in the
implementation. Examples of aspectual requirements
include synchronization policies that require a whole
set of operations to following a consistent locking
protocol, traversals of complex object graphs that
require global information, accounting mechanisms
that must be notified of every chargeable action, fault
tolerance mechanisms that require consistent creation
of redundant copies, and quality of service concerns
that require fine tuning of system priorities.

One might argue that all programming languages
since Fortran have had a way of separating out con-
cerns by creating and explicitly calling subprograms.
Subprograms are a great idea. We thoroughly endorse
their use. Just as OOP did not discard the ideas of
block structure and structured programming, AOP
does not reject existing technology. However, often
the expression of a concern cannot be neatly realized
by a call to a subroutine. A concern whose code
becomes tangled into other structural elements
becomes a mess. To ameliorate this problem, AOP
offers aspects: mechanisms beyond subroutines and
inheritance for localizing the expression of a crosscut-
ting concern. AOP systems also must provide some
mechanism for weaving aspects and base code into a
coherent system.

Subprograms have another disadvantage. They
require both knowledge and cooperation on the part
of the programmers of the calling components. That
is, one must know to explicitly invoke a subroutine,
and know how to invoke it. AOP systems offer
implicit invocation mechanisms for invoking behav-
ior in code whose writers were unaware of the addi-
tional concerns.2

Separating the expressions of multiple concerns in
programming systems promises simpler system evolu-
tion, more comprehensible systems, adaptability, cus-
tomizability, and easier reuse. Several elements of AOP
work toward these goals. By aggregating crosscutting
concerns into aspects, AOP congeals into a single tex-
tual structure behavior that conventional program-
ming would distribute throughout the code, both
making the aspect code and the target easier to under-
stand. Implicit invocation is a virtue in this age of
increased software complexity, as domain experts for
an application are unlikely to be familiar with intrica-

1The term aspect-oriented programming is attributed to Kiczales et al. Related work
includes adaptive programming, composition filters, multidimensional separation of
concerns, and subject-oriented programming. The editors of this special section choose
to use the term aspect-oriented programming to describe the space of programmatic
mechanisms for expressing crosscutting concerns, primarily because it is a catchier,
more commonly used, and less subject to ambiguous interpretation.

2Implicit invocation is a concept that in the past Robert Filman has termed oblivious-
ness, stated as: “The distinguishing characteristic of aspect-oriented programming sys-
tems (qua programming systems) is that they provide quantification and obliviousness.
Quantification is the idea that one can write unitary and separate statements that have
effect in many, non-local places in a programming system; obliviousness, that the
places these quantifications applied did not have to be specifically prepared to receive
these enhancements.” [1]

cies of specialized algorithms for distribution, authen-
tication, access control, synchronization, encryption,
redundancy, and so forth, and cannot be trusted to
always invoke them appropriately in their programs.
This becomes more important in an era of evolving
programs, where programmers can’t always anticipate
the demands their programs will need to deal with in
the future. Aspects themselves can be reused, and
aspects can be connectors for other components.

AOP Issues
At its essence, AOP is a programming technique. Like
all programming techniques, AOP must address both
what the programmer can say and how the computer
system will realize the program in a working system.3

Thus, a goal of AOP systems is not only to provide a
way of expressing crosscutting concerns in computa-
tional systems, but also to ensure these mechanisms
are conceptually straightforward and have efficient
implementations.

In reading the articles in this section, readers
should be sensitive to the nuances of different
approaches to different problems. A major distinction
among systems lies in the technology of combining
programs and aspects. Clear-box approaches to AOP
can examine the program and aspect internals, pro-
ducing a mixture of program and aspects. On the
other hand, black-box approaches shroud compo-
nents with aspect wrappers. Other issues to keep in
mind include:

• How an AOP system specifies aspects. This
includes defining the join points, those places
where aspect code interacts with the rest of the
system; aspect parameterization, the extent to
which aspects can be customized for a particular
use; source encapsulation, the source-code
requirements for specifying points to be joined
to; and the OO dependency, the extent to which
the AOP mechanism can be used in non-OO
programming systems.

• What composition mechanisms the system pro-
vides. This includes the issues of the existence of
dominant decomposition (Is there one decomposi-
tion to which aspects are applied, or are all con-
cerns treated as equals); explicit composition
languages (Does the system have a separate lan-

guage for describing which aspects are applied
where? Is this a domain-specific or general lan-
guage?); the visibility of aspects to each other; the
symmetry of privileges between the main program
and aspects; whether aspects are purely monotonic
or also able to delete behavior; what mechanism is
provided for resolving conflicts among aspects; and
to what extent the composition and execution
depend on the external state.

• Implementation mechanisms. This includes the
static/dynamic distinction, that is, whether compo-
sitions are determined statically at compile time or
dynamically as a system is running; modular com-
pilations, whether elements of the program can be
compiled separately; deployment-in-place, whether
AOP mechanisms can applied to an existing sys-
tem; target representation, whether AOP mecha-
nisms are applied to source code, byte code or
object code; and verification, whether there are
mechanisms for verifying compositions.

• Decoupling. This includes obliviousness, whether
the writer of the main code be aware that aspects
will be applied to it; intimacy, what the program-
mer has to do to prepare code for aspects; and
globality versus locality, whether aspects apply to
the program as a whole or only parts of it.

• Software process. This includes overall process,
what methodology or framework the system pro-
vides for organizing the system-building activity;
reusability, which aspect mechanisms enable aspect
reuse; domain-specificity, whether the aspect
mechanism is general or applicable to a specific
domain; analyzability, whether one can analyze the
performance of the aspect system; and testability,
which mechanisms enable debugging aspects and
systems.

The articles in this special section cover the main
intellectual branches of AOP, their historical develop-
ment, applications of AOP, and its enhancement
toward a complete AOP software engineering process.
AOP is the convergence of many independent research
paths. Many cite inspiration from Dijkstra and Par-
nas’s early expressions of the fundamental software
engineering principle of decomposition [3, 4].

We begin the section with a discussion between sev-
eral luminaries of the field, moderated by guest editor
Tzilla Elrad. This discussion delves into many aspects
of AOP, taking the form of Frequently Asked Ques-
tions about AOP, and we hope you find the partici-
pants’ contrasting perspectives illuminating.

Karl Lieberherr, one of the early researchers in the
field, has argued “The Law of Demeter,” which states:
Objects should only have knowledge of closely related

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 31

3That latter goal carries a caution: Implementers of programming languages have long
understood they can arbitrarily manipulate the behavior of a program by changing the
interpreter of that program. For example, an interpreter that checked at each execution
step for applicable aspects would provide a workable though clunky AOP mechanism.
This is straightforward for a skilled reflection programmer to do in reflective pro-
gramming systems. The problems with reflection as an AOP solution are that skilled
reflective programmers are scarce, and, more importantly, reflective systems typically
impose a large (one to two orders of magnitude) performance burden over more direct
encoding.

objects. This led to work on new programming struc-
tures to separate the expression of behavioral concerns
from structural ones. Lieberherr et al.’s article,
“Aspect-Oriented Programming with Adaptive Meth-
ods,” illustrates the use of adaptive methods to avoid
tangling by abstracting over the class structure.

Using insights gained during their work on soft-
ware environments and tool integration in the late
1980s, William Harrison and Harold Ossher pio-
neered the notion of separate specification of different
class hierarchies, each implementing a concern, with
subsequent composition of appropriate hierarchies to
build system variants (subject-oriented program-
ming). With Peri Tarr, they evolved this approach to
allow multiple, simultaneous decompositions of the
same software, and extraction of concerns from exist-
ing software. This theme is elaborated in Ossher and
Tarr’s “Using Multidimensional Separation of Con-
cerns to (Re)shape Evolving Software.”

Mehmet Aksit and his group at Twente University
have been the earliest and most prominent proponents
of filter-based approaches to AOP. In the late 1980s,
the filter principle was developed to express a generic

data abstraction mechanism. This was extended to
represent various types of concerns such as multiple
views, synchronization, interobject communication
and real-time specifications in a composable way. In
this issue, Bergmans and Aksit’s article, “Composing
Multiple Concerns Using Composition Filters,”
describes how to embody aspects in explicit filters, by
wrapping the filters around base components.

The AOP group at Xerox PARC came to AOP
through their work on reflection and metaobject pro-
tocols. Through experience with reflection and dis-
cussions with the other groups mentioned here, they
crystallized the idea that the focus on crosscutting
concerns is what distinguishes AOP from previous
separation of concerns technologies. The PARC
group developed a series of AO languages, culminat-
ing in AspectJ—“Getting Started With AspectJ” pro-
vides a brief introduction to their system.

We have included several shorter articles illustrat-
ing particular issues in developing AOP systems and
demonstrating the application of AOP in real sys-
tems. These include two assessments of the value of
AOP technology: “Analyzing the Role of Aspects in
Software Design” and “Does Aspect-Oriented Pro-
gramming Work?”; two discussions of the applica-
tions of AOP to systems development in “Structuring
Operating System Aspects” and “A Layered Approach
to Building Open Aspect-Oriented Systems”; the
application of AOP to virtual design in “Handling
Crosscutting Constraints in Domain-Specific Model-
ing”; and an overview of using reflection techniques
to implement aspects in “Aspect-Oriented Program-
ming Using Reflection and Metaobject Protocols.”

Links to research groups described here, and to
additional groups, can be found in the Aspect-
Oriented Software Development Web site [1].

References
1. Aspect-Oriented Software Development Web site; aosd.net.
2. Czarnecki, K. and Eisenecker, U.W. Generative Programming: Methods,

Tools, and Applications. Addison Wesley, Boston, 2000.
3. Dijkstra, E.W. A Discipline of Programming. Prentice Hall, Englewood

Cliffs, NJ, 1976.
4. Parnas, D.L. On the criteria to be used in decomposing systems into mod-

ules. Commun. ACM 15, 2 (Feb. 1972).

Tzilla Elrad (elrad@iit.edu) is a research professor leading the
Concurrent Programming Research Group in the Department of
Computer Science at the Illinois Institute of Technology in Chicago.
Robert E. Filman (rfilman@riacs.edu) is a scientist at the
Research Institute for Advanced Computer Science, NASA Ames
Research Center, Moffet Field, CA.
Atef Bader (abader@lucent.com) is a member of the Technical
Staff at Lucent Technologies in Chicago, IL.

© 2001 ACM 0002-0782/01/1000 $5.00

c

32 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

AOP is growing rapidly, and we see AOP
applications in many areas such as middle-

ware, security, fault tolerance, quality of service,
and operating systems. We are also beginning to see
AO applied at various stages of the software life
cycle. It is not yet a fully mature discipline and we
are looking forward to seeing more AO software
development in research and applications.

As a burgeoning research area, there are annual
workshops on separation of concerns at the Euro-
pean Conference on Object-Oriented Programming
(ECOOP) since 1997, at the ACM Conference on
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA) since 1999, and at the
International Conference on Software Engineering
(ICSE) in 1998, 2000, and 2001. A good starting point
for further reading is the Aspect-Oriented Software
Development Web site [1], which contains links to
the foundational AOP works mentioned here, papers
from the annual workshops, as well as links to over a
dozen groups working on AOP. The field has matured
sufficiently to generate it own independent confer-
ence: The First International Conference on Aspect-
Oriented Software Development is planned for
Twente, The Netherlands in April, 2002; see
trese.cs.utwente.nl/aosd2002.htm. c

Further Information

