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ABSTRACT 
As digital cameras and powerful computers have become 
wide-spread, the number of applications using vision 
techniques has increased significantly. One such 
application that has received significant attention from the 
computer vision community is traffic surveillance. We 
propose a new traffic surveillance system that works 
without prior, explicit camera calibration, and has the 
ability to perform surveillance tasks in real time. Camera 
intrinsic parameters and its position with respect to the 
ground plane were derived using geometric primitives 
common to any traffic scene. We use optical flow and 
knowledge of camera parameters to detect the pose of a 
vehicle in the 3D world. This information is used in a 
model-based vehicle detection and classification 
technique employed by our traffic surveillance 
application. The object (vehicle) classification uses two 
new techniques − color contour based matching and 
gradient based matching. Our experiments on several real 
traffic video sequences demonstrate good results for our 
foreground object detection, tracking, vehicle detection 
and vehicle speed estimation approaches. 
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1.  Introduction 
The rapidly increasing capacity of digital storage, 
computation power and the recent innovations in video 
compression standards lead to a strong growth of  
available video content. Digital cameras, which were 
novelty items in the 80’s, have become ubiquitous in the 
last two decades. This has led to cheaper and better video 
surveillance systems. The video data stored by these 
systems needs to be analyzed, which is generally done by 
humans on a need-to-know basis (e.g., as a forensic tool 
after a bank robbery). This undermines the ability of 
video surveillance as a real time observer. Visual traffic 
surveillance has attracted significant interest in computer 
vision, because of its tremendous application prospect. A 
traffic surveillance system needs to detect vehicles and 
classify them if possible. Generating vehicle trajectories 

from video data is also an important application and can 
be used in analyzing traffic flow parameters. Information 
such as gap, headway, stopped-vehicle detection, 
speeding vehicle, and wrong-way vehicle alarms can be 
useful for intelligent transportation systems. Efficient and 
robust localization of vehicles from an image sequence 
(video) can lead to semantic results, such as “Car No. 3 
stopped,” “Car No. 4 is moving faster than car No. 6.” 
However, such information can not be retrieved from 
image sequences as easily as humans do. 

The rest of this paper is organized as follows. Section 2 
gives an overview of our approach. Section 3 gives 
implementation details of our approach. Experimental 
results of the proposed technique are presented in section 
4. Section 5 discusses the conclusions and presents future 
directions of work. 
 
2.  Overview 
Before presenting the details of the actual system, this 
section explains the different parts of the system and their 
relationship with each other. Fig. 1 shows the components 
of our traffic video surveillance system in the form of a 
block diagram. 

Camera calibration. Camera calibration is an important 
part of many computer vision systems. Here we used an 
un-calibrated camera to capture the video sequence. 
Camera’s intrinsic parameters (e.g. focal length) and its 
position in the world coordinate system are not known in 
advance. All these parameters are determined using 
geometric primitives commonly found in traffic scenes. 
Using these parameters, ground plane rectification can be 
done. If a pixel in the image appears on the ground plane, 
its 3D coordinates can be found in the world reference 
frame. Worrall et al. presented an interactive tool for 
calibrating a camera that is suitable for use in outdoor 
scenes [1]. They used this interactive tool to calibrate 
traffic scenes with acceptable accuracy. Masoud et al. 
presented a method that uses certain geometric primitives 
commonly found in traffic scenes in order to recover 
calibration parameters [2]. 

Background modeling and foreground object 
detection. We use static camera to capture the traffic 
video. However, inherent changes in the background 



itself, such as wavering trees and flags, water surfaces, 
etc. the background of the video may not be completely 
stationary. These types of backgrounds are referred to as 
quasi-stationary backgrounds. Therefore, background 
modeling for traffic video surveillance needs to meet 
certain requirements. It needs to be able to handle quasi-
stationary backgrounds and it needs to be fast to handle 
real-time requirements. This part of the system detects the 
moving objects (blobs) regardless of whether they present 
a vehicle or non-vehicle. The overall accuracy of the 
system depends on robust foreground object detection. 
Background modeling methods can be divided into two 
types: parametric [3] and non-parametric [4]. Even though 
some of these methods work well, they are generally 
unstable if right parameters are not chosen [3], and 
computationally intensive for real-time use [4]. We use a 
simple recursive learning method to model the 
background. 

Vehicle pose estimation using optical flow. Optical flow 
algorithms estimate the motion of each pixel between two 
image frames. We use optical flow to estimate how 
different blobs are moving. Assuming that the vehicles 
move in the forward direction, optical flow gives a good 
estimate to how vehicles are oriented. This information is 
used by the reconstruction module to obtain a 3D model 
of the vehicle with the correct orientation. 

 
Fig. 1. Traffic video surveillance system overview. 

Re-projection using synthetic camera. After the camera 
parameters are known, we use these parameters to 
construct a synthetic camera using OpenGL. 3D models 
are also created in OpenGL for the classes of vehicles for 
which we want to perform classification. Using the 
information from the vehicle pose estimation module and 
the foreground object detection module, we re-project the 
3D wire-frame model back onto the image. 

Edge Detection. We detect the edges using the Canny 
edge detector in the regions where the objects were found 
by the foreground object detection module. These edges 
are used in the vehicle detection and classification stage. 

Vehicle detection and classification. The detection of 
vehicles has been receiving attention in the computer 

vision community because vehicles are such a significant 
part of our life [5, 6]. Vehicle classification is an 
inherently difficult problem. Gupte et al. [7] proposed a 
system for vehicle detection and classification. The 
classification is based on vehicle dimensions and is 
implemented at a very coarse granularity – it can only 
differentiate cars from non-cars. In order to achieve a 
finer-level classification of vehicles, we need to have a 
more sophisticated method that can detect the invariable 
characteristics for each vehicle category considered. Ma 
et al. developed a vehicle classification approach using 
modified SIFT descriptors [8]. However, application of 
such method to any arbitrary viewpoint and its real-time 
performance are still open questions. We use 3D wire-
frame models to detect and classify vehicles. Two 
different methods were developed to match a 3D wire 
frame models with the detected edges. The first routine 
uses a simple color contour technique. The second routine 
uses a more complex Gaussian-based matching technique 
that also takes into consideration the gradient. 

Vehicle Tracking. To collect any meaningful information 
from the sequence of images, it is important that we 
should be able to match the objects detected in 
consecutive frames. Over the years researchers in 
computer vision have proposed various solutions to the 
automated tracking problem. Reader may want to refer to 
[9] for details of different methods used for tracking. In 
our implementation, this part of the system tracks the 
blobs and tries to correct the errors from the foreground 
object detection module. It also keeps record of the tracks 
and their 3D world coordinates in each frame.  

Traffic Parameter Collection. This module collects and 
displays information such as the number of active tracks 
(vehicles), instantaneous velocity of a vehicle, class of a 
vehicle, and average velocity of a vehicle during the 
entire time when it was in camera’s field of view. 
 
3.  Description of our approach 

3.1. Camera calibration and synthetic camera 
modeling 

Camera calibration is a very important part of our system. 
Accuracy of the calibration dictates the accuracy of the 
overall system. It is equally important that the calibration 
process should be simple and do not require a special 
calibration object. Also, if one wants to process the video 
offline that was taken from an unknown camera at an 
unknown location, the camera parameters need to be 
determined from the video sequence itself. This requires 
the use of a self-calibration approach. Fortunately, traffic 
scenes generally provide enough geometric primitives to 
do this on-site. 

If we know the vanishing points of the ground plane in 
perpendicular directions, we can estimate the intrinsic and 
extrinsic parameters of the camera up to scale. The scale 
(i.e., camera height) is determined using the point-to-point 
distances. After determining the camera calibration 
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parameters, a synthetic camera is constructed in OpenGL 
that can be used to re-project 3D models back onto the 
image plane.  

3.2. Background Modeling and Foreground Object 
Detection 

This is another important aspect of our video surveillance 
system. It is very important that this module detects the 
relevant details of the scene while excluding irrelevant 
clutter. It also needs to be fast for real-time processing of 
video sequences. We propose to use an adaptive 
background model for the entire region of awareness, and 
for segmenting the moving objects that appear in 
foreground. Our approach involves learning a statistical 
color model of the background, and process a new frame 
using the current distribution in order to segment 
foreground elements. The algorithm has three 
distinguishable stages: learning, classification and post-
processing. In learning stage, we establish the background 
model using recursive learning. . We use all the channels 
(red, green, and blue) of a color image to increase the 
robustness. We assume that the pixel values tend to have 
Gaussian distribution and we try to estimate the mean and 
variance of the distribution using consecutive frames. In 
the classification stage, we classify the image pixels into 
foreground and background pixels based on background 
model. A single Gaussian distribution used in our 
implementation is not enough to model wavering tree 
branches which tend to fluctuate between two pixel 
values. Therefore we use the inherent information 
available to us to remove unwanted foreground. As we 
assume a fixed camera position, we can declare the region 
of interest (ROI) in the scene where vehicles will appear. 
One more advantage of using a ROI template is that it 
reduces the overall area to process for foreground object 
detection, hence speeding the algorithm. After the 
connected component analysis, we create a list of blobs 
(foreground objects). 

3.3. Vehicle Pose Estimation Using Optical Flow 

We need to estimate the pose of a vehicle for further 
processing (i.e., vehicle detection and classification). We 
use a pyramidal Lucas and Kanade optical flow technique 
[10]. Our algorithm has two stages: optical flow 
estimation and pose estimation. In the first stage, we 
calculate the pyramidal Lucas and Kanade optical flow 
for the detected foreground regions. We observed that 
without any loss of accuracy, we can estimate the optical 
flow after every Tof frames. This serves two purposes: it 
increases the speed of the algorithm as we don’t have to 
calculate optical flow for every frame and the substantial 
relative motion between blobs results in more robust 
optical flow detection. The value of Tof depends on the 
frame rate (frames per second - fps) of the video 
sequence. We found that Tof = fps/10 works well for the 
video sequences we worked on.  

In the next stage, we find the average optical flow vector 
for every blob. The optical flow feature vectors 

corresponding to a blob are averaged to get the optical 
flow average vector vavg that represents the orientation of 
the blob. If no vector corresponding to a blob is found, the 
blob is removed from the subsequent processing. Then, 
the angle α between the vector vavg and the positive Y-axis 
(both in 3D world coordinate system) is calculated. This 
resolves the problem of finding the orientation of a blob. 
To tackle the problem of finding the location of a blob in 
the 3D world coordinate system, we assume that the 
center of a blob represents the center of an actual object 
and all blobs are on the ground plane. Fig. 2 shows an 
example of the average optical flow vectors (red arrows) 
found for three vehicles in the image. 

Therefore, we have location and orientation of all the 
moving blobs (vehicles or non-vehicles) in the current 
frame. 

 
Fig. 2. Average optical flow vectors (red arrows). 

3.4. Reconstruction Using Synthetic Camera 

We developed four vehicle models for the four classes 
that we consider here: car, SUV (Sports Utility Vehicle), 
pickup truck and bus. Fig. 3 shows the 3D wire-frame 
models. These models are rotated and translated using the 
output of the vehicle pose estimation module. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. 3D wire-frame models. 
(a) Car (b) SUV (c) Pickup truck (d) Bus 

3.5. Vehicle Detection and Classification 

We propose two novel methods for vehicle detection and 
classification. We have incorporated the detection 
problem as a part of the classification problem. When the 
matching score for any class of vehicle is lower than a 



threshold then the object is classified as non-vehicle. The 
two classification algorithms proposed in this work are a 
color contour algorithm and a gradient based contour 
algorithm. Both algorithms try to match object edges with 
the 3D wire-frame models. Initially, the edge template is 
created by detecting the object edges. It is then matched 
with the 3D wire-frame models of the four vehicle 
classes. However, before doing this matching we need to 
rotate and translate the models such that they overlap the 
actual position of the vehicle in the image. After matching 
is done for all classes, the best match is assigned as the 
class of the vehicle under consideration. If the matching 
score for all classes is less than a threshold Tmatch, then we 
classify the object as non-vehicle. 

Color contour matching algorithm. As discussed 
earlier, the inputs to this algorithm are the object edge 
template and the 3D wire-frame template. We create color 
contour templates using these two templates and then 
match them by XORing to get matching template and 
score. To create a color contour template for the object 
edge template, we start by drawing filled circles of blue 
color at all the edge pixels detected. Then, we reduce the 
radius of the circle gradually and repeat the procedure for 
green, red and finally for black color. While creating a 
color contour template for a model edge template, we use 
only black color. Fig. 4 shows an example of color 
templates and corresponding matching template. In Fig. 
4(a), black contour represents the area closest to the actual 
edges; red contour represents area closer to the actual 
edges and so on. 

The matching template shown in Fig. 4(c) gives an 
estimate of how close the 3D wire-frame model is to the 
edges of the object. Matching score is calculated by 
counting the number of different color pixels present in 
the matching template. Each black pixel in the matching 
template represents perfectly matched edge pixel and 
contributes the highest to the matching score. Each red 
pixel contributes more than green and blue pixel, but less 
than black pixel. This matching score is then normalized 
using the matching score obtained by XORing the object 
edge template with itself. The accuracy of the algorithm 
can be increased by changing the matching scores and/or 
changing the radii of the color contours. This method 
benefits from using graphics functions (drawing circles); 
as they are generally optimized. However, it lacks the 
ability to take into consideration the edge direction while 
doing template matching. Therefore, it gives false 
positives when a lot of edges are detected in the object 
edge template. 

Gradient based matching algorithm. To address the 
problems encountered in the color contour matching 
algorithm, we propose a gradient based matching 
algorithm. We first calculate the gradient of the edges in 
both templates (object edge template and model edge 
template) using a 3×3 Prewitt mask. Then matching is 
done on the basis of gradient magnitude and direction.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Color contour templates and matching templates. 
(a) Color contour template for object edge template 
(b) Color contour template for 3D wire frame model 

(c) Matching template derived after XORing (a) and (b) 

We create two separate templates for each object edge 
template and model edge template. One of these templates 
contains the gradient magnitude values (magnitude 
template − MT) and other one contains edge direction 
information (direction template − DT). The values at 
location (i, j) in the magnitude and direction template are 
calculated using a Gaussian mask of size m×m (m=7 is 
used in our implementation). Therefore all edge points in 
the neighborhood of size m×m (centered at location (i, j)) 
contribute to the magnitude and direction values 
depending on their distance from pixel (i, j). Then, 
matching template MAT is derived using MT and DT of 
the blob edge template (BET) and model edge template 
(MET) using following equation: 

( , ) ( , )* ( , )*cos( ( , ) - ( , )).BET MET BET METMAT i j MT i j MT i j DT i j DT i j=

The matching score (MS) is calculated by using matching 
template MAT using following equation: 
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N BET N METscaling e= , MATself is 
the matching template obtained by matching BET with 
itself. N(BET) is the number of edge pixels in blob edge 
template, N(MET) is the number of edge pixels in model 
edge template, and Tmatch is the threshold that allows slack 
in difference between N(BET) & N(MET). 

The benefit of using a gradient based matching is that it 
takes into consideration the edge direction. While finding 
the matching score, we take into consideration the number 
of edge pixels available in both BET and MET. We do not 
scale the matching score down if the difference is less 



than a threshold Tmatch, but it is scaled exponentially if the 
difference is more than Tmatch. 

3.6. Vehicle Tracking and Traffic Parameter 
Collection 

In this work we propose an algorithm based on blob 
tracking [7]. The main advantage of this algorithm is its 
speed. In terms of traffic parameter collection, we keep a 
record of how each track was classified in each frame, the 
number of active tracks (vehicles) present at any time, 
velocity of each vehicle at current time, average velocity 
of each vehicle during the entire time when it was visible 
in the camera’s field of view. The velocity of the vehicle 
can be found by using the tracks’ location information. 
 
4. Experimental Results 

We used our traffic surveillance system to process several 
video sequences. Results for two of these video sequences 
(S1 and S2) taken from two different locations are 
presented in this section.  

Fig. 5 shows the correctness of camera calibration and 
pose estimation routines in video S1.    

 
Fig. 5. Models overlapped onto actual vehicles (S1). 

Fig. 6 shows an example of tracking. It shows how the 
vehicle (black SUV) labeled 094 was successfully tracked 
between frames 989 and 1093.  

Table 1 and Table 2 show quantitative results for the 
video sequences S1 and S2 respectively. The 
classification results presented here use gradient based 
matching. The vehicle classes are car (0), SUV (1), 
pickup truck (2), bus (3) and non-vehicle (-1). For the 
patch of street under surveillance in the S1 video 
sequence, the posted speed limit was 25 mph, whereas it 
was 35 mph for the S2 video sequence. The average 
velocity found by the traffic surveillance system for 
different vehicles is in accord with the posted speed 
limits. 

 
(a) 

 
(b) 

Fig. 6. Vehicle tracking (S1). 
(a) Frame no. 989 of S1. (b) Frame no. 1093 of S1. 

Table 1. Quantitative Results for the video sequence S1. 
Vehicle 
No. 

Actual 
class of 
vehicle 

Maximally 
detected class 
of vehicle 

Average 
Velocity 
(mph) 

1 2 2 29.01 
2 3 3 22.70 
3 0 0 29.23 
4 1 0 32.53 
5 1 1 22.82 
6 1 0 27.54 
7 2 0 26.02 
8 1 0 22.74 
9 0 0 23.73 
10 1 0 34.95 
11 0 0 24.73 
12 0 0 24.95 
13 0 0 26.96 
14 0 0 27.88 
15 1 1 32.17 
16 1 0 24.71 
17 1 0 24.40 
18 2 2 24.86 
19 0 0 24.51 
20 2 0 24.64 
21 1 0 21.52 

 

 



Table 2. Quantitative Results for the video sequence S2. 
Vehicle 
No. 

Actual 
class of 
vehicle 

Maximally 
detected class 
of vehicle 

Average 
Velocity 
(mph) 

1 2 2 49.37 
2 0 0 45.03 
3 1 2 36.71 
4 0 2 39.37 
5 2 2 39.48 
6 1 2 43.84 
7 0 0 39.37 
8 1 0 40.56 
9 0 2 42.05 
10 2 2 38.54 
11 2 2 36.70 
 
5. Conclusions 
We presented a traffic surveillance system that identifies, 
classifies and tracks vehicles. The system is general 
enough to be capable of detecting, tracking and 
classifying vehicles while requiring only minimal scene-
specific knowledge. We used a camera modeling 
technique that does not require prior, explicit calibration. 
The overall accuracy of the camera calibration system 
was good and it can be verified from the re-projected 
models that match the actual position of the vehicles in 
the image. The foreground object detection technique 
used is fast and found to be reliable. For the two video 
sequences, the tracking success rate was as high as 90%. 
We were also able to detect the average vehicle speeds 
using information recorded by tracking module. This 
information can also be used to find the number of 
vehicles present in the camera’s field of view at particular 
time and to find the traffic flow in each direction.  

We found that for the purpose of vehicle detection, the 3D 
wire-frame models used in this work are detailed enough 
to achieve high vehicle detection accuracy. We developed 
and used two 3D-model based matching techniques, 
namely color contour matching and gradient based 
matching. The benefit of using this technique is that it is 
fast (5 fps without optimization), compared to the 
different strategies suggested in the literature. Also, we 
did not restrict our view to lateral view with which many 
researchers were successful in getting high accuracy. 
Vehicle classification is the last step after foreground 
object detection, vehicle detection, and pose estimation. 
Therefore, errors in earlier steps affect vehicle 
classification. The classification accuracy can be 
improved by doing hierarchical classification where initial 
classification is done on the basis of length, width and 
area of blob, followed by further classification with 
detailed 3D class models.  

Overall, the system works well as far as foreground object 
detection, tracking, vehicle detection and vehicle speed 
estimation are concerned. This paper also introduced two 
novel viewpoint independent vehicle classification 

approaches. They can be modified to do hierarchical 
classification where initial classification is done on the 
basis of length, width and area of blob, followed by 
further classification with detailed 3D class models. 
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