

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN
AUTOMATED TRAFFIC SURVEILLANCE SYSTEM

Amol Ambardekar, Mircea Nicolescu, and George Bebis

Department of Computer Science and Engineering
University of Nevada, Reno

U.S.A.
ambardek@cse.unr.edu, mircea@cse.unr.edu, bebis@cse.unr.edu

ABSTRACT
As digital cameras and powerful computers have become
wide-spread, the number of applications using vision
techniques has increased significantly. One such
application that has received significant attention from the
computer vision community is traffic surveillance. We
propose a new traffic surveillance system that works
without prior, explicit camera calibration, and has the
ability to perform surveillance tasks in real time. Camera
intrinsic parameters and its position with respect to the
ground plane were derived using geometric primitives
common to any traffic scene. We use optical flow and
knowledge of camera parameters to detect the pose of a
vehicle in the 3D world. This information is used in a
model-based vehicle detection and classification
technique employed by our traffic surveillance
application. The object (vehicle) classification uses two
new techniques − color contour based matching and
gradient based matching. Our experiments on several real
traffic video sequences demonstrate good results for our
foreground object detection, tracking, vehicle detection
and vehicle speed estimation approaches.

KEY WORDS
Computer vision, object tracking, traffic surveillance,
vehicle detection, vehicle tracking, and vehicle
classification.

1. Introduction
The rapidly increasing capacity of digital storage,
computation power and the recent innovations in video
compression standards lead to a strong growth of
available video content. Digital cameras, which were
novelty items in the 80’s, have become ubiquitous in the
last two decades. This has led to cheaper and better video
surveillance systems. The video data stored by these
systems needs to be analyzed, which is generally done by
humans on a need-to-know basis (e.g., as a forensic tool
after a bank robbery). This undermines the ability of
video surveillance as a real time observer. Visual traffic
surveillance has attracted significant interest in computer
vision, because of its tremendous application prospect. A
traffic surveillance system needs to detect vehicles and
classify them if possible. Generating vehicle trajectories

from video data is also an important application and can
be used in analyzing traffic flow parameters. Information
such as gap, headway, stopped-vehicle detection,
speeding vehicle, and wrong-way vehicle alarms can be
useful for intelligent transportation systems. Efficient and
robust localization of vehicles from an image sequence
(video) can lead to semantic results, such as “Car No. 3
stopped,” “Car No. 4 is moving faster than car No. 6.”
However, such information can not be retrieved from
image sequences as easily as humans do.

The rest of this paper is organized as follows. Section 2
gives an overview of our approach. Section 3 gives
implementation details of our approach. Experimental
results of the proposed technique are presented in section
4. Section 5 discusses the conclusions and presents future
directions of work.

2. Overview
Before presenting the details of the actual system, this
section explains the different parts of the system and their
relationship with each other. Fig. 1 shows the components
of our traffic video surveillance system in the form of a
block diagram.

Camera calibration. Camera calibration is an important
part of many computer vision systems. Here we used an
un-calibrated camera to capture the video sequence.
Camera’s intrinsic parameters (e.g. focal length) and its
position in the world coordinate system are not known in
advance. All these parameters are determined using
geometric primitives commonly found in traffic scenes.
Using these parameters, ground plane rectification can be
done. If a pixel in the image appears on the ground plane,
its 3D coordinates can be found in the world reference
frame. Worrall et al. presented an interactive tool for
calibrating a camera that is suitable for use in outdoor
scenes [1]. They used this interactive tool to calibrate
traffic scenes with acceptable accuracy. Masoud et al.
presented a method that uses certain geometric primitives
commonly found in traffic scenes in order to recover
calibration parameters [2].

Background modeling and foreground object
detection. We use static camera to capture the traffic
video. However, inherent changes in the background

itself, such as wavering trees and flags, water surfaces,
etc. the background of the video may not be completely
stationary. These types of backgrounds are referred to as
quasi-stationary backgrounds. Therefore, background
modeling for traffic video surveillance needs to meet
certain requirements. It needs to be able to handle quasi-
stationary backgrounds and it needs to be fast to handle
real-time requirements. This part of the system detects the
moving objects (blobs) regardless of whether they present
a vehicle or non-vehicle. The overall accuracy of the
system depends on robust foreground object detection.
Background modeling methods can be divided into two
types: parametric [3] and non-parametric [4]. Even though
some of these methods work well, they are generally
unstable if right parameters are not chosen [3], and
computationally intensive for real-time use [4]. We use a
simple recursive learning method to model the
background.

Vehicle pose estimation using optical flow. Optical flow
algorithms estimate the motion of each pixel between two
image frames. We use optical flow to estimate how
different blobs are moving. Assuming that the vehicles
move in the forward direction, optical flow gives a good
estimate to how vehicles are oriented. This information is
used by the reconstruction module to obtain a 3D model
of the vehicle with the correct orientation.

Fig. 1. Traffic video surveillance system overview.

Re-projection using synthetic camera. After the camera
parameters are known, we use these parameters to
construct a synthetic camera using OpenGL. 3D models
are also created in OpenGL for the classes of vehicles for
which we want to perform classification. Using the
information from the vehicle pose estimation module and
the foreground object detection module, we re-project the
3D wire-frame model back onto the image.

Edge Detection. We detect the edges using the Canny
edge detector in the regions where the objects were found
by the foreground object detection module. These edges
are used in the vehicle detection and classification stage.

Vehicle detection and classification. The detection of
vehicles has been receiving attention in the computer

vision community because vehicles are such a significant
part of our life [5, 6]. Vehicle classification is an
inherently difficult problem. Gupte et al. [7] proposed a
system for vehicle detection and classification. The
classification is based on vehicle dimensions and is
implemented at a very coarse granularity – it can only
differentiate cars from non-cars. In order to achieve a
finer-level classification of vehicles, we need to have a
more sophisticated method that can detect the invariable
characteristics for each vehicle category considered. Ma
et al. developed a vehicle classification approach using
modified SIFT descriptors [8]. However, application of
such method to any arbitrary viewpoint and its real-time
performance are still open questions. We use 3D wire-
frame models to detect and classify vehicles. Two
different methods were developed to match a 3D wire
frame models with the detected edges. The first routine
uses a simple color contour technique. The second routine
uses a more complex Gaussian-based matching technique
that also takes into consideration the gradient.

Vehicle Tracking. To collect any meaningful information
from the sequence of images, it is important that we
should be able to match the objects detected in
consecutive frames. Over the years researchers in
computer vision have proposed various solutions to the
automated tracking problem. Reader may want to refer to
[9] for details of different methods used for tracking. In
our implementation, this part of the system tracks the
blobs and tries to correct the errors from the foreground
object detection module. It also keeps record of the tracks
and their 3D world coordinates in each frame.

Traffic Parameter Collection. This module collects and
displays information such as the number of active tracks
(vehicles), instantaneous velocity of a vehicle, class of a
vehicle, and average velocity of a vehicle during the
entire time when it was in camera’s field of view.

3. Description of our approach

3.1. Camera calibration and synthetic camera
modeling

Camera calibration is a very important part of our system.
Accuracy of the calibration dictates the accuracy of the
overall system. It is equally important that the calibration
process should be simple and do not require a special
calibration object. Also, if one wants to process the video
offline that was taken from an unknown camera at an
unknown location, the camera parameters need to be
determined from the video sequence itself. This requires
the use of a self-calibration approach. Fortunately, traffic
scenes generally provide enough geometric primitives to
do this on-site.

If we know the vanishing points of the ground plane in
perpendicular directions, we can estimate the intrinsic and
extrinsic parameters of the camera up to scale. The scale
(i.e., camera height) is determined using the point-to-point
distances. After determining the camera calibration

Reconstruction
Using Synthetic
Camera

Vehicle
Detection and
Classification

Camera
Calibration

Background
Modeling

Foreground
Object
Detection

Vehicle Pose
Estimation Using
Optical Flow

Vehicle
Tracking

Edge
Detection

Traffic Parameter
Collection

parameters, a synthetic camera is constructed in OpenGL
that can be used to re-project 3D models back onto the
image plane.

3.2. Background Modeling and Foreground Object
Detection

This is another important aspect of our video surveillance
system. It is very important that this module detects the
relevant details of the scene while excluding irrelevant
clutter. It also needs to be fast for real-time processing of
video sequences. We propose to use an adaptive
background model for the entire region of awareness, and
for segmenting the moving objects that appear in
foreground. Our approach involves learning a statistical
color model of the background, and process a new frame
using the current distribution in order to segment
foreground elements. The algorithm has three
distinguishable stages: learning, classification and post-
processing. In learning stage, we establish the background
model using recursive learning. . We use all the channels
(red, green, and blue) of a color image to increase the
robustness. We assume that the pixel values tend to have
Gaussian distribution and we try to estimate the mean and
variance of the distribution using consecutive frames. In
the classification stage, we classify the image pixels into
foreground and background pixels based on background
model. A single Gaussian distribution used in our
implementation is not enough to model wavering tree
branches which tend to fluctuate between two pixel
values. Therefore we use the inherent information
available to us to remove unwanted foreground. As we
assume a fixed camera position, we can declare the region
of interest (ROI) in the scene where vehicles will appear.
One more advantage of using a ROI template is that it
reduces the overall area to process for foreground object
detection, hence speeding the algorithm. After the
connected component analysis, we create a list of blobs
(foreground objects).

3.3. Vehicle Pose Estimation Using Optical Flow

We need to estimate the pose of a vehicle for further
processing (i.e., vehicle detection and classification). We
use a pyramidal Lucas and Kanade optical flow technique
[10]. Our algorithm has two stages: optical flow
estimation and pose estimation. In the first stage, we
calculate the pyramidal Lucas and Kanade optical flow
for the detected foreground regions. We observed that
without any loss of accuracy, we can estimate the optical
flow after every Tof frames. This serves two purposes: it
increases the speed of the algorithm as we don’t have to
calculate optical flow for every frame and the substantial
relative motion between blobs results in more robust
optical flow detection. The value of Tof depends on the
frame rate (frames per second - fps) of the video
sequence. We found that Tof = fps/10 works well for the
video sequences we worked on.

In the next stage, we find the average optical flow vector
for every blob. The optical flow feature vectors

corresponding to a blob are averaged to get the optical
flow average vector vavg that represents the orientation of
the blob. If no vector corresponding to a blob is found, the
blob is removed from the subsequent processing. Then,
the angle α between the vector vavg and the positive Y-axis
(both in 3D world coordinate system) is calculated. This
resolves the problem of finding the orientation of a blob.
To tackle the problem of finding the location of a blob in
the 3D world coordinate system, we assume that the
center of a blob represents the center of an actual object
and all blobs are on the ground plane. Fig. 2 shows an
example of the average optical flow vectors (red arrows)
found for three vehicles in the image.

Therefore, we have location and orientation of all the
moving blobs (vehicles or non-vehicles) in the current
frame.

Fig. 2. Average optical flow vectors (red arrows).

3.4. Reconstruction Using Synthetic Camera

We developed four vehicle models for the four classes
that we consider here: car, SUV (Sports Utility Vehicle),
pickup truck and bus. Fig. 3 shows the 3D wire-frame
models. These models are rotated and translated using the
output of the vehicle pose estimation module.

(a)

(b)

(c)

(d)

Fig. 3. 3D wire-frame models.
(a) Car (b) SUV (c) Pickup truck (d) Bus

3.5. Vehicle Detection and Classification

We propose two novel methods for vehicle detection and
classification. We have incorporated the detection
problem as a part of the classification problem. When the
matching score for any class of vehicle is lower than a

threshold then the object is classified as non-vehicle. The
two classification algorithms proposed in this work are a
color contour algorithm and a gradient based contour
algorithm. Both algorithms try to match object edges with
the 3D wire-frame models. Initially, the edge template is
created by detecting the object edges. It is then matched
with the 3D wire-frame models of the four vehicle
classes. However, before doing this matching we need to
rotate and translate the models such that they overlap the
actual position of the vehicle in the image. After matching
is done for all classes, the best match is assigned as the
class of the vehicle under consideration. If the matching
score for all classes is less than a threshold Tmatch, then we
classify the object as non-vehicle.

Color contour matching algorithm. As discussed
earlier, the inputs to this algorithm are the object edge
template and the 3D wire-frame template. We create color
contour templates using these two templates and then
match them by XORing to get matching template and
score. To create a color contour template for the object
edge template, we start by drawing filled circles of blue
color at all the edge pixels detected. Then, we reduce the
radius of the circle gradually and repeat the procedure for
green, red and finally for black color. While creating a
color contour template for a model edge template, we use
only black color. Fig. 4 shows an example of color
templates and corresponding matching template. In Fig.
4(a), black contour represents the area closest to the actual
edges; red contour represents area closer to the actual
edges and so on.

The matching template shown in Fig. 4(c) gives an
estimate of how close the 3D wire-frame model is to the
edges of the object. Matching score is calculated by
counting the number of different color pixels present in
the matching template. Each black pixel in the matching
template represents perfectly matched edge pixel and
contributes the highest to the matching score. Each red
pixel contributes more than green and blue pixel, but less
than black pixel. This matching score is then normalized
using the matching score obtained by XORing the object
edge template with itself. The accuracy of the algorithm
can be increased by changing the matching scores and/or
changing the radii of the color contours. This method
benefits from using graphics functions (drawing circles);
as they are generally optimized. However, it lacks the
ability to take into consideration the edge direction while
doing template matching. Therefore, it gives false
positives when a lot of edges are detected in the object
edge template.

Gradient based matching algorithm. To address the
problems encountered in the color contour matching
algorithm, we propose a gradient based matching
algorithm. We first calculate the gradient of the edges in
both templates (object edge template and model edge
template) using a 3×3 Prewitt mask. Then matching is
done on the basis of gradient magnitude and direction.

(a)

(b)

(c)

Fig. 4. Color contour templates and matching templates.
(a) Color contour template for object edge template
(b) Color contour template for 3D wire frame model

(c) Matching template derived after XORing (a) and (b)

We create two separate templates for each object edge
template and model edge template. One of these templates
contains the gradient magnitude values (magnitude
template − MT) and other one contains edge direction
information (direction template − DT). The values at
location (i, j) in the magnitude and direction template are
calculated using a Gaussian mask of size m×m (m=7 is
used in our implementation). Therefore all edge points in
the neighborhood of size m×m (centered at location (i, j))
contribute to the magnitude and direction values
depending on their distance from pixel (i, j). Then,
matching template MAT is derived using MT and DT of
the blob edge template (BET) and model edge template
(MET) using following equation:

(,) (,)* (,)*cos((,) - (,)).BET MET BET METMAT i j MT i j MT i j DT i j DT i j=

The matching score (MS) is calculated by using matching
template MAT using following equation:

,

,

,

,

(,)
() - ()

,
(,) min(() - ())

=
(,)

, ,
(,)

i j
match

self
i j

i j

self
i j

MAT i j
N BET N MET

if T
MAT i j N BET N MET

MS
MAT i j

scaling otherwise
MAT i j

⎧
⎪ <⎪
⎪⎪
⎨
⎪
⎪ ×
⎪
⎪⎩

∑
∑

∑
∑

 where
2(()- ())-()

min((), ())
N BET N MET

N BET N METscaling e= , MATself is
the matching template obtained by matching BET with
itself. N(BET) is the number of edge pixels in blob edge
template, N(MET) is the number of edge pixels in model
edge template, and Tmatch is the threshold that allows slack
in difference between N(BET) & N(MET).

The benefit of using a gradient based matching is that it
takes into consideration the edge direction. While finding
the matching score, we take into consideration the number
of edge pixels available in both BET and MET. We do not
scale the matching score down if the difference is less

than a threshold Tmatch, but it is scaled exponentially if the
difference is more than Tmatch.

3.6. Vehicle Tracking and Traffic Parameter
Collection

In this work we propose an algorithm based on blob
tracking [7]. The main advantage of this algorithm is its
speed. In terms of traffic parameter collection, we keep a
record of how each track was classified in each frame, the
number of active tracks (vehicles) present at any time,
velocity of each vehicle at current time, average velocity
of each vehicle during the entire time when it was visible
in the camera’s field of view. The velocity of the vehicle
can be found by using the tracks’ location information.

4. Experimental Results

We used our traffic surveillance system to process several
video sequences. Results for two of these video sequences
(S1 and S2) taken from two different locations are
presented in this section.

Fig. 5 shows the correctness of camera calibration and
pose estimation routines in video S1.

Fig. 5. Models overlapped onto actual vehicles (S1).

Fig. 6 shows an example of tracking. It shows how the
vehicle (black SUV) labeled 094 was successfully tracked
between frames 989 and 1093.

Table 1 and Table 2 show quantitative results for the
video sequences S1 and S2 respectively. The
classification results presented here use gradient based
matching. The vehicle classes are car (0), SUV (1),
pickup truck (2), bus (3) and non-vehicle (-1). For the
patch of street under surveillance in the S1 video
sequence, the posted speed limit was 25 mph, whereas it
was 35 mph for the S2 video sequence. The average
velocity found by the traffic surveillance system for
different vehicles is in accord with the posted speed
limits.

(a)

(b)

Fig. 6. Vehicle tracking (S1).
(a) Frame no. 989 of S1. (b) Frame no. 1093 of S1.

Table 1. Quantitative Results for the video sequence S1.
Vehicle
No.

Actual
class of
vehicle

Maximally
detected class
of vehicle

Average
Velocity
(mph)

1 2 2 29.01
2 3 3 22.70
3 0 0 29.23
4 1 0 32.53
5 1 1 22.82
6 1 0 27.54
7 2 0 26.02
8 1 0 22.74
9 0 0 23.73
10 1 0 34.95
11 0 0 24.73
12 0 0 24.95
13 0 0 26.96
14 0 0 27.88
15 1 1 32.17
16 1 0 24.71
17 1 0 24.40
18 2 2 24.86
19 0 0 24.51
20 2 0 24.64
21 1 0 21.52

Table 2. Quantitative Results for the video sequence S2.
Vehicle
No.

Actual
class of
vehicle

Maximally
detected class
of vehicle

Average
Velocity
(mph)

1 2 2 49.37
2 0 0 45.03
3 1 2 36.71
4 0 2 39.37
5 2 2 39.48
6 1 2 43.84
7 0 0 39.37
8 1 0 40.56
9 0 2 42.05
10 2 2 38.54
11 2 2 36.70

5. Conclusions
We presented a traffic surveillance system that identifies,
classifies and tracks vehicles. The system is general
enough to be capable of detecting, tracking and
classifying vehicles while requiring only minimal scene-
specific knowledge. We used a camera modeling
technique that does not require prior, explicit calibration.
The overall accuracy of the camera calibration system
was good and it can be verified from the re-projected
models that match the actual position of the vehicles in
the image. The foreground object detection technique
used is fast and found to be reliable. For the two video
sequences, the tracking success rate was as high as 90%.
We were also able to detect the average vehicle speeds
using information recorded by tracking module. This
information can also be used to find the number of
vehicles present in the camera’s field of view at particular
time and to find the traffic flow in each direction.

We found that for the purpose of vehicle detection, the 3D
wire-frame models used in this work are detailed enough
to achieve high vehicle detection accuracy. We developed
and used two 3D-model based matching techniques,
namely color contour matching and gradient based
matching. The benefit of using this technique is that it is
fast (5 fps without optimization), compared to the
different strategies suggested in the literature. Also, we
did not restrict our view to lateral view with which many
researchers were successful in getting high accuracy.
Vehicle classification is the last step after foreground
object detection, vehicle detection, and pose estimation.
Therefore, errors in earlier steps affect vehicle
classification. The classification accuracy can be
improved by doing hierarchical classification where initial
classification is done on the basis of length, width and
area of blob, followed by further classification with
detailed 3D class models.

Overall, the system works well as far as foreground object
detection, tracking, vehicle detection and vehicle speed
estimation are concerned. This paper also introduced two
novel viewpoint independent vehicle classification

approaches. They can be modified to do hierarchical
classification where initial classification is done on the
basis of length, width and area of blob, followed by
further classification with detailed 3D class models.

References

[1] A. Worrall and G. Sullivan and K. Baker, A simple
intuitive camera calibration tool for natural images, Proc.
of British Machine Vision Conference, 1994, 781-790.
[2] O. Masoud, N. P. Papanikolopoulos, Using Geometric
Primitives to Calibrate Traffic Scenes, Proc. of
International Conference on Intelligent Robots and
Systems, 2, 2004, 1878-1883.
[3] C. Wern, A. Azarbayejani, T. Darrel, and A. Petland,
Pfinder: real-time tracking of human body, IEEE
Transactions on PAMI, 19(7), 1997, 780–785.
[4] A. Tavakkoli, M. Nicolescu, G. Bebis, A Novelty
Detection Approach for Foreground Region Detection in
Videos with Quasi-stationary Backgrounds, Proc. of the
2nd International Symposium on Visual Computing, Lake
Tahoe, Nevada, 2006, 40-49.
[5] C. Papageorgiou, and T. Poggio, A Trainable System
for Object Detection, International Journal of Computer
Vision, 38(1), 2000, 15-33.
[6] A. Rajagopalan, P. Burlina and R. Chellappa, Higher
Order Statistical Learning for Vehicle Detection in
Images, Proc. of IEEE International Conference on
Computer Vision, 2, 1999, 1204-1209.
[7] S. Gupte, O. Masoud, R. F. K. Martin, and N. P.
Papanikolopoulos, Detection and Classification of
Vehicles, IEEE Transactions on Intelligent
Transportation Systems, 3(1), 2002, 37-47.
[8] X. Ma, W. E. L. Grimson, Edge-based rich
representation for vehicle classification, Proc. of the
International Conference on Computer Vision, 2006,
1185-1192.
[9] N. K. Kanhere, S. T. Birchfield, and W. A. Sarasua,
Vehicle Segmentation and Tracking in the Presence of
Occlusions, Transportation Research Board Annual
Meeting, 2006.
[10] B. D. Lucas, T. Kanade, An Iterative Image
Registration Technique with an Application to Stereo
Vision, Proc. of Imaging Understanding Workshop, 1981,
121-130.

